Skip to content

Bibliography


  1. Bhaskar, A. and Stodden, V. 2024. Reproscreener: Leveraging LLMs for Assessing Computational Reproducibility of Machine Learning Pipelines. Proceedings of the 2nd ACM Conference on Reproducibility and Replicability (New York, NY, USA, Jul. 2024), 101--109. 

  2. Bhaskar, A. and Stodden, V. 2022. ReproScreen: Enabling Robustness in Machine Learning at Scale via Automated Knowledge Verification. Zenodo. 

  3. Krafczyk, M.S. et al. 2021. Learning from reproducing computational results: Introducing three principles and the Reproduction Package. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 379, 2197 (May 2021), rsta.2020.0069, 20200069. DOI:https://doi.org/10.1098/rsta.2020.0069

  4. Krafczyk, M. et al. 2019. Scientific Tests and Continuous Integration Strategies to Enhance Reproducibility in the Scientific Software Context. Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems - P-RECS '19 (Phoenix, AZ, USA, 2019), 23--28. 

  5. Stodden, V. et al. 2018. Enabling the Verification of Computational Results: An Empirical Evaluation of Computational Reproducibility. Proceedings of the First International Workshop on Practical Reproducible Evaluation of Computer Systems (Tempe AZ USA, 2018), 1--5. 

  6. Conference, N.I.P.S. 2021. Introducing the NeurIPS 2021 Paper Checklist. Medium

  7. Gundersen, O.E. and Kjensmo, S. 2018. State of the Art: Reproducibility in Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence. 32, 1 (2018). 

  8. Isdahl, R. and Gundersen, O.E. 2019. Out-of-the-Box Reproducibility: A Survey of Machine Learning Platforms. 2019 15th International Conference on [eScience]{.nocase} ([eScience]{.nocase}) (San Diego, CA, USA, 2019), 86--95. 

  9. Stodden, V. et al. 2018. AIM: AN ABSTRACTION FOR IMPROVING MACHINE LEARNING PREDICTION. 2018 IEEE Data Science Workshop (DSW) (Lausanne, Switzerland, 2018), 1--5. 

  10. Midwinter, M. et al. 2021. Resolution adaptive networks for efficient inference. 

  11. Pineau, J. et al. 2020. Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). arXiv:2003.12206 [cs, stat]. (2020). 

  12. Raghupathi, W. et al. 2022. Reproducibility in Computing Research: An Empirical Study. IEEE Access. 10, (2022), 29207--29223. DOI:https://doi.org/10.1109/ACCESS.2022.3158675

  13. Sadjadi, M. 2017. Arxivscraper